
Ekiden: A Platform for Confidentiality-Preserving,
Trustworthy, and Performant Smart Contracts

Raymond Cheng∗§ Fan Zhang† Jernej Kos§ Warren He∗§ Nicholas Hynes∗§ Noah Johnson∗§
Ari Juels† Andrew Miller‡§ Dawn Song∗§

∗UC Berkeley †Cornell Tech ‡UIUC §Oasis Labs

Abstract—Smart contracts are applications that execute on
blockchains. Today they manage billions of dollars in value and
motivate visionary plans for pervasive blockchain deployment.
While smart contracts inherit the availability and other secu-
rity assurances of blockchains, however, they are impeded by
blockchains’ lack of confidentiality and poor performance.

We present Ekiden, a system that addresses these critical
gaps by combining blockchains with Trusted Execution Environ-
ments (TEEs). Ekiden leverages a novel architecture that sep-
arates consensus from execution, enabling efficient TEE-backed
confidentiality-preserving smart contracts and high scalability.
Our prototype (with Tendermint as the consensus layer) achieves
example performance of 600x more throughput and 400x less
latency at 1000x less cost than the Ethereum mainnet.

Another contribution of this paper is that we systematically
identify and treat the pitfalls arising from harmonizing TEEs
and blockchains. Treated separately, both TEEs and blockchains
provide powerful guarantees, but hybridized, though, they en-
gender new attacks. For example, in naı̈ve designs, privacy in
TEE-backed contracts can be jeopardized by forgery of blocks, a
seemingly unrelated attack vector. We believe the insights learned
from Ekiden will prove to be of broad importance in hybridized
TEE-blockchain systems.

I. INTRODUCTION

Smart contracts are protocols that digitally enforce agree-

ments between or among distrusting parties. Typically execut-

ing on blockchains, they enforce trust through strong integrity

assurance: Even the creator of a smart contract cannot feasibly

modify its code or subvert its execution. Smart contracts

have been proposed to improve applications across a range of

industries, including finance, insurance, identity management,

and supply chain management.

Smart contracts inherit some undesirable blockchain proper-

ties. To enable validation of state transitions during consensus,

blockchain data is public. Existing smart contract systems thus

lack confidentiality or privacy: They cannot safely store or

compute on sensitive data (e.g., auction bids, financial transac-

tions). Blockchain consensus requirements also hamper smart

contracts with poor performance in terms of computational

power, storage capacity, and transaction throughput. Ethereum,

the most popular decentralized smart contract platform, is used

almost exclusively today for technically simple applications

such as tokens, and can incur costs vastly (eight orders of mag-

nitude) more than ordinary cloud-computing environments. In

short, the application complexity of smart contracts today is
highly constrained. Without critical performance and confi-

dentiality improvements, smart contracts may fail to deliver

on their transformative promise.

Researchers have explored cryptographic solutions to these

challenges, such as various zero-knowledge proof systems [41]

and secure multiparty computation [81]. However, these ap-

proaches have significant performance overhead and are only

applicable to limited use cases with relatively simple compu-

tations. A more performant and general-purpose option is use

of a trusted execution environment (TEE).

A TEE provides a fully isolated environment that prevents

other software applications, the operating system, and the host

owner from tampering with or even learning the state of an

application running in the TEE. For example, Intel Software

Guard eXtensions (SGX) provides an implementation of a

TEE. The Keystone-enclave project [4] aims to provide an

open-source TEE design.

A key observation driving our system design is that TEEs

and blockchains have complementary properties. On the one

hand, a blockchain can guarantee strong availability and

persistence of its state, whereas a TEE cannot guarantee

availability (as the host can terminate TEEs at its discretion),

nor can it reliably access the network or persistent storage.

On the flip side, a blockchain has very limited computation

power, and must expose its entire state for public verification,

whereas a TEE incurs minimal overhead compared with native

computation, and offers verifiable computation with confiden-

tial state via remote attestation. Thus it appears appealing to

build hybrid protocols that take advantage of both.

Harmonizing TEEs with blockchains, though, is a challenge.

Subtle pitfalls arise when the two are naı̈vely glued together.

One such pitfall arises from a fundamental limitation of

TEEs: A malicious host can arbitrarily manipulate their

scheduling and I/O. Consequently, TEEs might terminate

at any point, posing the risk and challenge of lost and/or

conflicting state. This problem is exacerbated by the fact that

the so-called trusted timer in TEEs (SGX, in particular) can in

fact only provide a “no-earlier-than” notion of time, because

a malicious host can also delay the clock read (a message

transmitted over the bus). Thus, while it’s tempting to use a

blockchain to checkpoint a TEE’s state (e.g. [40]), the lack

of a reliable timer renders it tricky for a TEE to ascertain

an up-to-date view of the blockchain. As we’ll show later,

naı̈ve state-checkpointing protocols open up rewinding attacks

(Section III). Another interesting and dangerous consequence

185

2019 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2019, Raymond Cheng. Under license to IEEE.
DOI 10.1109/EuroSP.2019.00023

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

is that seemingly unrelated attack vectors come into play. For

example, the confidentiality of TEE-protected content could

be jeopardized by integrity attacks against the blockchain:

e.g., an attacker could circumvent a privacy budget enforced

by a TEE by providing a forged blockchain to rewind its

execution and sent it arbitrarily many queries. Other challenges

include tolerating compromised TEEs, supporting robust and

consistent failover when TEEs crash, and key management for

enclaves. We systematically identify and treat each of these

pitfalls in this paper.

Following the above design principles, we present Ekiden,

a system for highly performant and confidentiality-preserving

smart contracts. To the best of our knowledge, Ekiden is

the first confidentiality-preserving smart contract system ca-

pable of thousands of transactions per second. The key to

this achievement is a secure and principled combination of

blockchains and trusted hardware. Ekiden combines any de-

sired underlying blockchain system (permissioned or permis-

sionless) with TEE-based execution. Anchored in a formal

security model expressed as a cryptographic ideal functional-

ity [17], Ekiden’s principled design supports rigorous analysis

of its security properties.

Ekiden adopts an architecture where computation is sepa-

rated from consensus. Ekiden uses compute nodes to perform

smart contract computation over private data off chain in

TEEs, then attest to their correct execution on chain. The

underlying blockchain is maintained by consensus nodes,

which need not use trusted hardware. Ekiden is agnostic

to consensus-layer mechanics, only requiring a blockchain

capable of validating remote attestations from compute nodes.

Ekiden can thus scale consensus and compute nodes indepen-

dently according to performance and security needs.

By operating compute nodes in TEEs, Ekiden imposes

minimal performance overhead relative to an ordinary (e.g.,

cloud) computing environment. In this way, we avoid the

computational burden and latency of on-chain execution. TEE-

based computation in Ekiden provides confidentiality, enabling

efficient use of powerful cryptographic primitives that a TEE

is known to emulate, such as functional encryption [29] and

black-box obfuscation [58], and also provides a trustworthy

source of randomness, a major acknowledged difficulty in

blockchain systems [16].

To address the availability and network security limitations

of TEEs, Ekiden supports on-chain checkpointing and (op-

tional) storage of contract state. Ekiden thereby supports safe

interaction among long-lived smart contracts across different

trust domains. To address potential TEE failures, such as side

channel attacks, we propose mitigations to preserve integrity

and limit data leakage (Section III-A). Assuming blockchain

integrity, users need not trust smart contract creators, min-

ers, node operators or any other entity for liveness, persis-

tence, confidentiality, or correctness. Ekiden thus enables self-

sustaining services that can outlive any single node, user, or

development effort.1

Technical challenges and contributions. Our work on Ekiden

addresses several key technical challenges:

• Formal security modeling: While intuitively clear, the

desired and achievable security properties required for

Ekiden are challenging to define formally. We express the

full range of security requirements of Ekiden in terms

of an ideal functionality FEkiden. We outline a security

proof in the Universal Composability (UC) framework

that shows that the Ekiden protocol matches FEkiden under

concurrent composition.

• A principled approach for hybridized TEE-blockchain
systems: We systematically enumerate the fundamental

pitfalls arising from fusing blockchains and TEEs and

offer general techniques for overcoming them. Further,

we show that by appealing to cryptographic ideal func-

tionalities, these techniques can be applied in a principled,

provably secure, and performant way that we believe

can be generalized to a broad range of hybridized TEE-

blockchain systems.

• Performance: The blockchain is likely to be a perfor-

mance bottleneck of a TEE-blockchain hybrid system. We

provide optimization that minimize the use of blockchain

without degrading security: We show that they realize the

same FEkiden functionality as the unoptimized protocol.

Evaluation. We evaluate the performance of Ekiden on a

suite of applications that exercise the full range of system

resources and demonstrate how Ekiden enables application

deployment that would otherwise be impractical due to pri-

vacy and/or performance concerns. They include a machine

learning framework, within which we implement medical-

diagnosis and credit-scoring applications, a smart building

thermal model, and a poker game. We also port an Ethereum

Virtual Machine implementation to Ekiden, so that existing

contracts (e.g., written in Solidity), such as Cryptokitties [1]

and the ERC20 token, can run in our framework as well. We

report on development effort, showing that the programming

model in Ekiden lends itself to simple and intuitive application

development. Contracts in Ekiden process transactions 2–

3 orders of magnitude both faster and higher throughput

over Ethereum. Our performance optimizations also greatly

compress the amount of data stored on the blockchain, yielding

a 2–4 order of magnitude improvement over the baseline. (The

advantage is greater for read-write operations on contracts with

large state, such as our token contract.)

II. BACKGROUND

a) Smart Contracts and Blockchains: Blockchain-based

smart contracts are programs executed by a network of partic-

ipants who reach agreement on the programs’ state. Existing

smart contract systems replicate data and computation on all

nodes in the system. so that individual node can verify correct

execution of the contract. Full replication on all nodes provides

1Our system name Ekiden refers to this property. “Ekiden” is a Japanese
term for a long-distance relay running race.

186

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

a high level of fault tolerance and availability. Smart contract

systems such as Ethereum [27] has demonstrated their utility

across a range of applications.

However, several critical limitations impede wider adoption

of current smart contract systems. First, on-chain computation

of fully replicated smart contracts is inherently expensive. For

example in August 2017, it cost $26.55 to add 2 numbers

together one million times in an Ethereum smart contract [27],

a cost roughly 8 orders of magnitude higher than in AWS

EC2 [66]. Furthermore, current systems offer no privacy

guarantees. Users are identified by pseudonyms. As numerous

studies have shown [64], [53], [56], [65], pseudonymity pro-

vides only weak privacy protection. Moreover, contract state
and user input must be public in order for miners to verify

correct computation. Lack of privacy fundamentally restricts

the scope of applications of smart contracts.

b) Trusted Hardware with Attestation: A key building

block of Ekiden is a trusted execution environment (TEE)

that protects the confidentiality and integrity of computations,

and can issue proofs, known as attestations, of computation

correctness. Ekiden is implemented with Intel SGX [5], [34],

[52], a specific TEE technology, but we emphasize that it

may use any comparable TEE with attestation capabilities,

such as the ongoing effort Keystone-enclave [4] aiming to

realize open-source secure hardware enclave. We now offer

brief background on TEEs, with a focus on Intel SGX.

Intel SGX provides a CPU-based implementation of

TEEs—known as enclaves in SGX—for general-purpose com-

putation. A host can instantiate multiple TEEs, which are not

only isolated from each other, but also from the host. Code

running inside a TEE has a protected address space. When data

from a TEE moves off the processor to memory, it is trans-

parently encrypted with keys only available to the processor.

Thus the operating system, hypervisor, and other users cannot

access the enclave’s memory. The SGX memory encryption

engine also guarantees data integrity and prevents memory

replay attacks [32]. Intel SGX supports attested execution,

i.e., it is able to prove the correct execution of a program,

by issuing a remote attestation, a digital signature, using a

private key known only to the hardware, over the program

and an execution output. Remote attestation also allows remote

users to establish encrypted and authenticated channels to an

enclave [5]. Assuming trust in the hardware, and Intel, which

authenticates attestation keys, it is infeasible for any entity

other than an SGX platform to generate any attestation, i.e.,

attestations are existentially unforgeable.

However, attested execution realized by trusted hardware

isn’t perfect. For example, SGX alone cannot guarantee

availability: a malicious host can terminate enclaves or drop

messages arbitrarily. Even an honest host could accidentally

lose state (e.g. when power cycles). The weak availability of

SGX poses a fundamental challenge to the design of Ekiden.

Also, the current SGX implementation is vulnerable to side-

channel attacks [77], [60]. Ekiden is compatible with existing

defenses [13], [58], [48], [75], [63]. We discuss side-channel

resistance in Section III-A.

III. TECHNICAL CHALLENGES IN TEE-BLOCKCHAIN

HYBRID SYSTEMS

Before diving into the specifics of Ekiden, we first describe

and address the fundamental pitfalls that arise when harmo-

nizing TEEs and blockchains. The solutions serve as building

blocks of the Ekiden protocol, and we believe the insights

learned from Ekiden will prove to be of broad importance in

hybridized TEE-blockchain systems.

A. Tolerating TEE failures

Although designed to execute general purpose programs,

trusted hardware is not a panacea. Here we analyze the lim-

itations of TEEs and their impact on TEE-blockchain hybrid

protocols.

a) Availability failures: Trusted hardware in general can-

not ensure availability. In the case of SGX, a malicious host

can terminate enclaves, and even an honest host could lose

enclaves in a power cycle. A TEE-blockchain system must

tolerate such host failures, ensuring that crashed TEEs can at

most delay execution.

Our high-level approach is to treat TEEs as expendable

and interchangeable, relying on the blockchain to resolve

any conflicts resulting from concurrency. To ensure that any

particular TEE is easily replaced, TEEs are stateless, and

any persistent state is stored by the blockchain. We discuss

later how TEEs can also keep soft state across invocations

as a performance optimization, but we emphasize that the

techniques in Ekiden ensure that losing such state at any point

does not affect security.

b) Side channels: Although TEEs aim to protect confi-

dentiality, recent work has uncovered data leakage via side-

channel attacks. Existing defenses are generally application-

and attack-specific (e.g., crypto libraries avoid certain data-

dependent operations [13]); generalizing such protections re-

mains challenging. Thus, Ekiden largely defers protections to

the application developer.

Even though there is perhaps no definitive and practical

panacea to all side-channel attacks, it is still desirable to limit

the impact of compromised TEEs and provide graceful degra-

dation in the face of small-scale compromise. Our approach is

to compartmentalize both spatially and temporally. We design

critical components in Ekiden, such as the key manager,

against a strong adversarial model, allowing an attacker to

break the confidentiality of a small fraction of TEEs, and limit

the access to the key manager from other components. We also

employ proactive key rotation [33] to confine the purview of a

leaked key. Key management is fundamental to the availability

of a TEE-blockchain system, as discussed below.

c) Timer failures: TEEs in general lack trusted time

sources. In the case of SGX, although a trusted relative timer is

available, the communication between enclaves and the timer

(provided by an off-CPU component) can be delayed by the

OS [38], [37]. Moreover server-grade Intel CPUs offer no

support for SGX timers at the time of writing. Thus a TEE-

blockchain hybrid protocol must minimize reliance on the TEE

timer.

187

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

Our approach is to design protocols that do not require TEEs

to have a current view of a blockchain. Specifically, instead

of requiring a TEE to distinguish stale state from current

state (without a synchronized clock, there is no definitive

countermeasure to a network adversary delaying messages

from the blockchain), our techniques rely on the blockchain

to proactively reject any update based on a stale input state (a

hash of which is included in the update).

The missing timer also makes it hard for TEEs to verify

that an item has been persisted in the blockchain, i.e. to

establish “proofs of publication,” as coined by [40]. However

[40] doesn’t consider threats caused by lack of trustworthy

time in TEEs—e.g., injection of old, fake, easily minable

blocks—that are critical in PoW-based blockchains. One of

our contributions is a general, time-based proof-of-publication

protocol that is secure against network adversary delaying

clock read, as we now briefly explain.

B. Proof of Publication for PoW blockchains

In order to leverage blockchains as persistent storage, a TEE

must be able to efficiently verify that an item has been stored

in the blockchain. For permissioned blockchains, such a proof

can consist of signatures from a quorum of consensus nodes.

To establish proofs of publication for PoW-based blockchains,

TEEs must be able to validate new blocks. As noted in [21], a

trusted timer is needed to defend against an adversary isolating

an enclave and presenting an invalid subchain. Unfortunately,

timing sources over secure channels (e.g. SGX timers) cannot

guarantee a bounded response time, as discussed above. To

work around this limitation, we leverage the confidentiality of

TEEs so that an attacker delaying a timer’s responses cannot

prevent an enclave from successfully verifying blockchain

contents. Our solution can even work without SGX timers

given trust in, e.g. TLS-enabled NTP servers. Due to lack of

space, we relegate our proof-of-publication protocol for PoW

blockchains to Section V-A.

C. Key management in TEEs

A fundamental limitation of using a blockchain to persist

TEE state is the lack of confidentiality. We showed previously

how to avoid this problem by encryption. This, however, leads

to another problem: how can one persist the encryption keys?

Generally the method is to replicate keys across multiple

TEEs. However, the flip side is the challenge of minimizing the

key exfiltration risk in the face of confidentiality breach (e.g.

via side-channel attacks). There is in general a fundamental

tension between exposure risk and availability: A higher

replication factor means not only better resiliency to state loss,

but also a larger attack surface. Therefore the tradeoff and

achievable properties would depend on the threat model.

Since there is perhaps no definitive and practical full-

system side-channel mitigation, our approach is to design the

key manager against a stronger adversarial model where the

attacker is allowed to break the confidentiality of a small

fraction of TEEs, and limit the access from other components.

We outline the key management protocol in Section V-B.

D. Atomic delivery of execution results

In blockchain systems, ensuring the atomicity of executions,

namely either both executions e1, e2 finish or none of them,

has been a fundamental problem, as exemplified by work on

atomic cross-chain swaps [10]. A similar but more complicated

problem arises in TEE-blockchain hybridization.

For a general stateful TEE-blockchain protocol, TEE ex-

ecution yields two messages: m1, which delivers the output

to the caller, and m2, which delivers the state update to the

blockchain, both via adversarial channels. We emphasize that

it is critical to enforce atomic delivery of the two messages,

i.e. both m1 and m2 are delivered or the system has become

permanently unavailable. m1 is delivered when the caller

receives it. The new state m2 is delivered once accepted by the

blockchain. Rejected state update are not considered delivered.

To see the necessity of atomic delivery, consider possible

attacks when it’s violated, i.e., when only one of the two

messages is delivered. First, if only the output m1 is delivered,

a rewind attack becomes possible. Since TEE cannot tell

whether an input state is fresh, an attacker can provide stale

states to resume a TEE’s execution from an old state. This

enables grinding attacks against randomized TEE programs.

An attacker may repeatedly rewind until receiving the desired

output. Another example is that rewinding could defeat budget-

based privacy protection, such as differential privacy. On the

other hand, if only the state update m2 is delivered, the user

risks permanent loss of the output, as it might be impossible

to reproduce the same output with the updated state.

We specify the atomic delivery protocol in Section V-C.

IV. OVERVIEW OF EKIDEN

In this section, we provide an overview of the design and

security properties of Ekiden.

A. Motivation

As an example to motivate our work, consider a credit

scoring application—an example we implement and report

on in Section VII-A. Credit scores are widely used by

lenders, insurers, and others to evaluate the creditworthi-

ness of consumers. Despite its considerable revenue ($10.8B

in 2017 [36]), the credit reporting industry in the U.S. is

concentrated among a handful of credit bureaus [36]. Such

centralization creates large single points of failure and other

problems, as highlighted by a recent data breach affecting

nearly half the US population [12].

Blockchain-based decentralized credit scoring is thus an

attractive and popular alternative. Bloom [45], for example,

is a startup offering a credit scoring system on Ethereum.

Their scheme, however, only supports a static credit scoring

algorithm that omits important private data and cannot support

predictive modeling. Such applications are bedeviled by two

critical limitations of current smart contract systems: (1) A

lack of data confidentiality needed to protect sensitive con-

sumer records (e.g., loan-service history for credit scoring)

and the proprietary prediction models derived from them and

188

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

(Enck(statenew), σTEE) Enck(stateprev)

k

Fig. 1. Overview of Ekiden architecture and workflow. Clients send inputs to
confidentiality-preserving smart contracts, which are executed within a TEE
at any compute node. The blockchain stores encrypted contract state. See
Section IV-B for an overview.

(2) A failure to achieve the high performance needed to handle

global workloads.

To support large-scale, privacy-sensitive applications like

credit scoring, it is essential to meet these two requirements

while preserving the integrity and availability offered by

blockchains—all without requiring a trusted third party. Eki-

den offers a confidential, trustworthy, and performant platform

that achieves precisely this goal for smart contract execution.

B. Ekiden Overview

Conceptually, Ekiden realizes a secure execution environ-

ment for rich user-defined smart contracts. An Ekiden contract

is a deterministic stateful program. Without loss of generality,

we assume contract programs take the form (outp, stnew) :=
Contract(stold, inp), ingesting as input a previous state stold

and a client’s input inp, and generating an output outp and

new state stnew.

Once deployed on Ekiden, smart contracts are endowed with

strong confidentiality, integrity and availability guarantees.

Ekiden achieves these properties with a hybrid architecture

combining trusted hardware and the blockchain. Figure 1

depicts the architecture of Ekiden and a workflow of Ekiden

smart contracts. As it shows, there are three types of entities

in Ekiden: clients, compute nodes and consensus nodes.

• Clients are end users of smart contracts. In Ekiden, a

client can create contracts or execute existing ones with

secret input. In either case, clients delegate computation to

compute nodes (discussed below). We expect clients to be

lightweight, allowing both mobile and web applications to

interact with contracts.

• Compute nodes process requests from clients by running

the contract in a contract TEE and generating attestations

proving the correctness of state updates. Anyone with a

TEE-enabled platform can participate as a compute node,

contributing to the liveness and scalability of the system.

A quorum of compute nodes form a key management

committee and run a distributed protocol to manage keys

used by contract TEEs. A contract TEE reaches out to the

key management committee to create or retrieve keys. We

defer details of key management to Section V-B.

• Consensus nodes maintain a distributed append-only

ledger, i.e. a blockchain, by running a consensus proto-

col. Contract state and attestations are persisted on this

blockchain. Consensus nodes are responsible for checking

the validity of state updates using TEE attestations, as we

discuss below.

C. Workflow

We now sketch the contract creation and request execution

workflow, providing further details on Figure 1. The detailed

formal protocol is presented in Section VI-B.

For simplicity, we assume a client has a priority list of com-

pute nodes to use. In practice, a coordinator can be employed

to facilitate compute node discovery and load balancing. We

denote a client as P and a compute node as Comp.

a) Contract creation: When creating a contract, P sends

a piece of contract code Contract to Comp. Comp loads

Contract into a TEE (called contract TEE hereafter), and starts

the initialization. The contract TEE creates a fresh contract id

cid, obtains fresh (pkin
cid, sk

in
cid) pair and kstate

cid from the key man-

agement committee and generates an encrypted initial state

Enc(kstate
cid ,�0) and an attestation σTEE, proving the correctness

of initialization and that pkin
cid is the corresponding public key

for contract cid. Finally, Comp obtains a proof of the cor-

rectness of σTEE by contacting the attestation service (detailed

below); this proof and σTEE are bundled into a “certified” attes-

tation π. Comp then sends (Contract, pkin
cid,Enc(k

state
cid ,�0), π)

to consensus nodes. The full protocol for contract creation is

specified in the “create” call of ProtEkiden (Fig. 2). Consensus

nodes verify π before accepting Contract, the encrypted initial

state, and pkin
cid as valid and placing it on the blockchain.

b) Request execution: The steps of request execution

illustrated in Fig. 1 are as follows:

(1) To initiate the process of executing a contract cid with

input inp, P first obtains pkin
cid associated with the contract

cid from the blockchain, computes inpct = Enc(pkin
cid, inp)

and sends to Comp a message (cid, inpct), as specified in

Lines 8-11 of ProtEkiden.

(2) Comp retrieves the contract code and the encrypted pre-

vious state stct = Enc(kstate
cid , stold) of contract cid, from the

blockchain, and loads stct and inpct into a TEE and starts

the execution, as specified in Line 30-33 of ProtEkiden.

(3-4) From the key management committee, the contract TEE

obtains kstate
cid and skin

cid, with which it decrypts stct and inpct

and executes, generating an output outp, a new encrypted

state st′ct = Enc(kstate
cid , stnew), and an signature π proving

correct computation, as specified in Line 7-13 of the TEE

Wrapper (Fig. 9).

(5a, 5b) Finally, Comp and P conduct an atomic delivery

protocol which delivers outp to P and (st′ct, π) to the

consensus nodes. We defer the detail of atomic delivery

to Section V-C. Briefly, Step 5a and Step 5b in Fig. 1

189

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

are executed atomically, i.e. outp is revealed to P if and

only if (st′ct, π) is accepted by consensus nodes. Consensus

nodes verify π before accepting the new state as valid and

placing it on the blockchain.

A key distinction between Ekiden and existing smart con-

tract platforms (e.g. Ethereum [27]) is Ekiden decouples

request execution from consensus. In Ethereum, request ex-

ecution is replicated by all nodes in the network to reach

consensus, rendering the entire network as slow as a single

node. Whereas in Ekiden, request is only executed by K
compute nodes for some small K (e.g. in Figure 1, we set

K = 1) and consensus nodes just verify K proofs of correct

execution without repeating the execution

In our implementation, a proof of correct execution takes

the form of a signature π. Specifically, a compute node Comp
obtains π as follows. Suppose the execution on Comp results

in an output st′ct and an attestation σTEE (a signature [15] over

the contract code and st′ct). Comp then sends σTEE to the Intel

Attestation Service (IAS), which verifies σTEE and replies with

π = (b, σTEE, σIAS), where b ∈ {0, 1} indicates the validity of

σTEE and σIAS is a signature over b and σTEE by IAS. π is then

submitted to consensus node as a proof of correctness for st′ct.

As π is just a signature, consensus nodes need neither trusted

hardware nor to contact the IAS to verify it.

D. Ekiden Security Goals

Here we summarize the security goals of Ekiden. Briefly,

Ekiden aims to support execution of general-purpose contracts

while enforcing the following security properties:

Correct execution: Contract state transitions reflect correct

execution of contract code on given state and inputs.

Consistency: At any time, the blockchain stores a single

sequence of state transitions consistent with the view of

each compute node.

Secrecy: During a period without any TEE breach, Ekiden

guarantees that contract state and inputs from honest

clients are kept secret from all other parties. Additionally,

Ekiden is resilient to some key-manager TEEs being

breached.

Graceful confidentiality degradation: Should a confiden-

tiality breach occur in a computation node (as opposed to a

key-manager node), Ekiden provides forward secrecy and

reasonable isolation from the affected TEEs. Specifically,

suppose a confidentiality breach happens at t. The attacker

can at most access the history up to t −Δ where Δ is a

system parameter. Moreover, a compromised TEE can only

affect a subset of contracts.

Non-goals: Ekiden does not prevent contract-level leakage

(e.g. through covert channels, bugs or side channels). Thus

contract developers are responsible for ensuring that no secret

is revealed through public output, and that the contract is free

of bugs and side channels. We discuss supported mitigation in

Section VI-D.

E. Assumptions and Threat Model

a) TEE: Recent work demonstrates that the confidential-

ity of SGX enclaves may be compromised via side-channel

attacks. In light of this threat, we assume the adversary can

compromise the confidentiality of a small fraction of TEEs.

As noted above, the impact depends on whether the breaches

affect key-manager or computation nodes. We assume that

TEE hardware is otherwise correctly implemented and se-

curely manufactured.

b) Blockchain: Ekiden is designed to be agnostic to

the underlying consensus protocol. It can be deployed atop

any blockchain implementation as long as the requirements

specified below are met.

We assume the blockchain will perform prescribed compu-

tation correctly and is always available. In particular, Ekiden

relies on consensus nodes to verify attestations. We further

assume the blockchain provides an efficient way to construct

proofs of item inclusion on the blockchain, i.e., proofs of

publication, as discussed in Section III-B.

c) Threat Model: All parties in the system must trust

Ekiden and TEE. We assume the adversary can control the

operating system and the network stack of all but one com-

pute nodes. On controlled nodes, the adversary can reorder

messages and schedule processes arbitrarily. We assume the

attacker can compromise the confidentiality of a small fraction

(e.g. f%) of TEEs. The adversary observes global network

traffic and may reorder and delay messages arbitrarily.

The adversary may corrupt any number of clients. Clients

need not execute contracts themselves and do not require

trusted hardware. We assume honest clients trust their own

code and platform, but not other clients. Each contract has an

explicit policy dictating how data is processed and requests

are serviced. Ekiden does not (and cannot reasonably) prevent

contracts from leaking secrets intentionally or unintentionally

through software bugs.

V. BUILDING BLOCKS

Before diving to protocol details, we first present key

building blocks of the Ekiden protocol, addressing the general

technical challenges in TEE-blockchain systems, as reviewed

in Section III.

A. Proof of Publication

We now present a proof of publication protocol for permis-

sionless blockchains. Please refer to Section III-B for back-

ground and motivation. A proof of publication is an interactive

proof between a verifier E , in the form of a contract TEE, and

a untrusted prover P . The high level idea is to only give P
a limited amount of time to publish the message in a block

within a subchain of sufficient difficulty so that an adversary

cannot feasibly forge it. The protocol is formally specified

in the online version [20]. We give text description below so

the formal specification is not required for understanding.

E stores a recent checkpoint block CB from the blockchain,

from which a difficulty δ(CB), e.g. the number of leading

zeroes in the block nonce, can be calculated. E will emit an

190

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

(attested) version of CB to any requesting client, enabling the

client to verify CB’s freshness. Given a valid recent CB, E
can verify new blocks based on δ(CB), assuming the difficulty

is relatively stationary. (For simplicity in our analysis here, we

assume constant difficulty, but our analysis can be extended

under an assumption of bounded difficulty variations.)

To initiate publication of m, E calls the timer to get a

timestamp t1. As discussed, E may receive t1 after a delay.

After receiving t1 (maybe at a time later than t1), E generates

a random nonce r and requires the prover to publish (m, r).
Upon receiving a proof π(m,r) (a subchain containing (m, r))
from P , E calls the timer again for t2. Let nc to be the number

of confirmations in (m, r), τ be the expected block interval

(an invariant of the blockchain), and ε be a multiplicative

slack factor that accounts for variation in the time to generate

blocks, which is a stochastic process. E.g., ε = 1.5 means that

production of π(m,r) is allowed to be up to 1.5 times slower

than expected on the main chain. E accepts π(m,r) only if

t2 − t1 < nc × τ × ε.
Setting ε to a high value reduces the probability of false

rejections (i.e., rejecting proofs from an honest P when the

main chain growth was unluckily slow during some time-

frame). However, a high ε also increases the possibility of false

acceptance, i.e. accepting a forged subchain. For any ε > 1, it

is possible to require a large enough nc so that the probability

of a successful attack becomes negligible. However, a large nc

means that an honest P needs to wait for a long time before

P can obtain the output, may affecting the user experience.

For example, for a powerful attacker with 25% hash power

(roughly the largest mining pool known to exist in Bitcoin

and Ethereum at the time of writing), setting nc = 80 and

ε = 1.6 means the attacker needs an expected 2112 hashes to

forge a proof of publication2, while an honest proof will be

rejected with probability 2−19. Similar block-synchronization

techniques and analysis are used in the recently proposed

Tesseract TEE-based cryptocurrency exchange [10].

It is easy to see that delaying the timer’s responses does not

give the attacker more time than t2 − t1. Delaying timestamp

t1 shrinks this apparent interval of time, disadvantaging the

attacker. E’s checkpoint block can be updated with the same

protocol, by publishing an empty message. Note that once a

message is successfully published by a TEE, other TEEs can

obtain the proof via secure channels established by attestations,

saving the cost of repeating the protocol.

B. Key Management

Each Ekiden contract is associated with a set of keys,

including a symmetric key for state encryption and a key

pair to encrypt client input. Here we discuss the generation,

distribution, and rotation of these keys.

1) Adversarial model: We consider a adversary that can

break the confidentiality, e.g., via side-channel attacks, of some

fraction (e.g. f%) of the TEEs. The exact value of f depends

on the deployment and enrollment model. f can be a very

2as the time of writing, it takes roughly 273 hashes to mine a Bitcoin block.

low value if enrollment is limited to well-managed nodes,

e.g., ones hosted by capable and reputable organizations. But

when deployed in a more open environment, f needs to be

reasonably high. We assume the participating hosts have (at

least partially) Sybil-resistant identities. One way to achieve

this is to require a security deposit to join the protocol.

In addition, we assume there are sufficiently many (e.g.

more than 2f% of) participants online at any time so that

the availability of keys are retained. In practice, participation

can be motivated by economic rewards and penalties. We leave

the incentive design for future work.

2) Desired properties: Since decryption keys are even-

tually revealed to a contract TEE, which itself may also

be compromised, actively used keys (i.e. hot keys) must

be short-live, derived from a less-exposed long-term master

secret. Ideally, a key management protocol should satisfy the

following properties:

• Confidentiality: The adversary (within our model) cannot

exfiltrate the long-term master key.

• Availability: An honest contract TEE can always access

decryption keys.

• Forward secrecy: If a short-term key is compromised at time

t, it cannot be used to decrypt messages encrypted before

t−Δ, for some system parameter Δ.

3) Preliminaries: Below we outline a key management pro-

tocol that satisfies the above requirements. We first review the

building blocks, including distributed key generation (DKG)

protocols and distributed pseudo-random functions (PRFs).

a) Distributed Key Generation (DKG): A DKG protocol

(e.g. [30]) allows a set of N parties to generate unbiased,

random keys. The outcome of a run of a DKG protocol is

a secret s, but shared among parties using a secret-sharing

scheme (typically Shamir’s).

b) Distributed PRF: Informally, a PRF is a collection of

functions F = {fs}s∈S , such that for a random index s←$S,

fs(·) is indistinguishable from a random function.

Naor et al. [57] introduce distributed PRFs, which are

such that parties with shares of s can evaluate fs(·) without

reconstructing s. Specifically, let G be a Schnorr group and g
be a generator. Let H : {0, 1}∗ → G be a hash function, [57]

shows that fs(x) = H(x)s is a family of PRF.

Suppose s is shared among parties using a (k, n)-secret

sharing scheme. To evaluate fs(x), party i simply computes

and outputs yi = H(x)si , computed with its share si. After

collecting at least k + 1 of {yi}, one can derive fs(x) by

polynomial interpolation in the exponent:

fs(x) = H(x)S = H(x)
∑

i∈A Siλi =
∏
i∈A

yλi
i

where λi are Lagrange coefficients λi =
∏

j �=i
−j
i−j .

4) Protocol:
a) Key management committees and long-term keys:

Assuming Sybil-resistant identities, we can sample N nodes

from the participants to form a key management committee

(KMC). N is a system parameter. When initializing a contract

191

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

c, KMC runs the DKG protocol to generate a long term key

kc, so that kc is secret-shared among KMC members using a

(�fN� , N)-secret sharing scheme. Previous work on proactive

secret sharing (e.g. [33], [68]) can be used to periodically

rotate the committee without changing the secret. [68] also

allows a committee to be dynamically expanded.

b) Generating short-term keys: Suppose short-term keys

expire every epoch. To get the short-term key for contract

c at epoch t, a compute node Comp first establishes secure

channels and authenticates itself with members in KMC. Once

verified that Comp is indeed executing c, each KMC member

i computes kc,t,i = H(t)k
i
c and sends kc,t,i to Comp. After

collecting f + 1 outcomes from A ⊆ KMC, Comp can

construct the short-term key for epoch t by kc,t =
∏

i∈A kλi
c,t,i

where λi are Lagrange coefficients.

c) Breach isolation: We proactively quarantine confiden-

tiality breaches by enforcing a privacy budget for each com-

pute node. For this to work, we assume contract TEEs have

unforgeable host identities (e.g., the linkable EPID public key

in SGX provides one). Key-manager nodes maintain a counter

κComp for each compute node Comp to record the number of

queries. The counter is reset along with epoch advancement.

Key-manager nodes fulfill a query only if κComp < κ for some

system parameter κ. With this in place, no matter how many

TEEs a breached compute node spawns, it can at most obtain

κ keys. In practice, requests to a depleted honest compute node

can be redirected to other nodes, resulting in only a modest

overhead.

C. Atomic Delivery

Recall that TEE execution yields two messages: m1, which

delivers the output to the caller, and m2, which delivers the

state update to the blockchain, both via adversarial channels.

As discussed in Section III-D, it is critical to enforce atomic

delivery of the two messages, i.e. both m1 and m2 are

delivered or the system has become permanently unavailable.

Now we specify a protocol for atomic delivery.

Assuming a secure communication channel between a TEE

and the calling client P (which in practice can be constructed

with remote attestation), we realize atomic delivery of m1 and

m2 (defined above) via the following two-phase protocol: To

initiate atomic delivery, TEE obtains a fresh key k from the

key manager and sends an attested mc
1 = Enc(k,m1) to P

over a secure channel. Once P acknowledges receipt of mc
1,

the TEE sends m2 to the blockchain. Finally, after seeing πm2
,

a proof of publication for m2, TEE sends k to P .

The above protocol realizes atomic delivery. On the one

hand, as a TEE can ascertain the delivery of m2 by verifying

πm2
, k is revealed only if m2 is delivered. On the other hand,

if m2 has been delivered, k will be released eventually because

at least one TEE is available and the key management protocol

ensures that the availability of k.

VI. PROTOCOL DETAILS AND SECURITY PROOF

In this section, we specify ProtEkiden, the protocol realiza-

tion of Ekiden. It aims to realize a Universal Composability

(UC) [17] ideal functionality FEkiden that we defer to Ap-

pendix A for lack of space and encourage the reader to consult.

Looking ahead, ProtEkiden UC-realizes FEkiden.

A. Preliminary and Notation

a) Attested Execution: To formally model attested ex-

ecution on trusted hardware, we adopt the ideal function-

ality Gatt defined in [62]. Informally, a party first loads a

program prog into a TEE with an “install” message. On

a “resume” call, the program is run on the given input,

generating an output outp along with an attestation σTEE =
ΣTEE.Sig(skTEE, (prog, outp)), a signature under a hardware

key skTEE. The public key pkTEE can be obtained from

Gatt.getpk(). See [62] for details.

In practice it’s useful to allow a TEE to output data

that is not included in attestation. We extend Gatt slightly

to allow this: if a TEE program prog generates a pair of

output (outp1, outp2), the attestation only signs outp1, i.e.

σTEE = ΣTEE.Sig(skTEE, (prog, outp1)). A common pattern is

to include a hash of outp2 in outp1, to allow parties to verify

σTEE and outp2 separately. Similar technique is used in [78].

Following the notation in [41], [75], we use contract wrap-

pers (defined in Fig. 9) to abstract away routine functionality

such as state encryption, key management, etc. A contract c
augmented with the wrapper is denoted ĉ.

b) Blockchain: Fblockchain[succ] (given in Appendix A)

defines a general-purpose append-only ledger implemented by

common blockchain protocols (formally defined in Figure 7 in

the Appendix). The parameter succ is a function that specifies

the criteria for a new item to be added to the storage, modeling

the notion of transaction validity. We retain the append-only

property of blockchains but abstract away the inclusion of

state updates in blocks. We assume overlay semantics that

associate blockchain data with id’s. In addition to read and

write interfaces, Fblockchain provides a convenient interface by

which clients can ascertain whether an item is included in the

blockchain. In practice, this interface avoids the overhead of

downloading the entire blockchain.

c) Parameterizing Fblockchain: In Ekiden, the contents of

storage are parsed as an ordered array of state transitions,

defined as transi = (H(sti−1), sti, σi), a tuple of a hash of

the previous state, a new state, and a proof from TEE attesting

to the correctness of a state transition. (Note that as a perfor-

mance optimization, large user input—e.g. training data in an

ML contract— may not be stored on chain.) Storage can be

interpreted as a special initial state followed by a sequence of

state transitions: Storage = ((Contract, st0, σ0),{transi}i≥1).
For a state transition to be valid, it must extends the

latest state and the attestation must verify. Formally, this is

achieved by parameterizing Fblockchain with a successor func-

tion succ(·, ·) such that succ(Storage, (h, stnew, σTEE)) = true
if and only if h = H(stold) where stold is the latest state in

Storage and ΣTEE.Vf(pkTEE, σTEE, (h, stnew)). This guarantees

that at any time there is a single sequence of state transitions

consistent with the view of each party, i.e. the chain of state

transitions is fork-free.

192

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

B. Formal Specification of the Protocol

The Ekiden protocol is formally specified in ProtEkiden

(Fig. 2). ProtEkiden relies on Gatt and Fblockchain, ideal function-

ality for attested execution and the blockchain. ProtEkiden also

use a digital signature scheme Σ(KGen, Sig,Vf), a symmetric

encryption scheme SE(KGen,Enc,Dec) and an asymmetric

encryption scheme AE(KGen,Enc,Dec).
a) Sharing state keys: Each contract is associated with

a set of keys. As discussed in Section V-B, contract TEEs

delegate key management to key manager TEEs. In ProtEkiden,

communication with key managers is abstracted away with the

keyManager function.

b) Contract creation: To create a contract in Ekiden, a

client Pi calls the create subroutine of a compute node

Comp with input Contract, a piece of contract code. Comp

loads the ̂Contract into a TEE and starts the initialization by

invoking the “create” call. As specified in Fig. 9, the contract

TEE creates a fresh contract cid, obtains fresh (pkin
cid, sk

in
cid)

pair and kstate
cid from the key manager and generates an en-

crypted initial state st0 and an attestation σTEE. The attestation

proves the st0 is correctly initialized and that pkin
cid is the

corresponding public key for contract cid. The compute node

Comp sends (Contract, cid, st0, pk
in
cid, σTEE) to Fblockchain and

waits for an receipt. Comp returns the contract cid to Pi, who

will verify that contract cid is properly stored on Fblockchain.

c) Request execution: To execute a request to contract

cid, a client Pi first obtains the input encryption key pkin
cid from

Fblockchain. Then Pi calls the request subroutine of Comp
with input (cid, inpct), where inpct is Pi’s input encrypted with

pkin
cid and authenticated with spki. Comp fetches the encrypted

previous state stct from Fblockchain and launches an contract

TEE with code ̂Contract and input (cid, inpct, stct).
As specified in Fig. 9, if σPi

verifies, the contract TEE

decrypts stct and inpct with keys obtained from the key

manager and executes the contract program Contract to get

(stnew, outp). To ensure the new state and the output are

delivered atomically, Comp and Pi conduct an atomic delivery

protocol as specified in Section V-C:

• First the contract TEE computes outpct = Enc(kout
cid, outp)

and st′ct = Enc(kstate
cid , stnew), and send both and proper

attestation to Pi in a secure channel established by epki.
• Pi acknowledges the reception by calling the

claim-output subroutine of Comp, which triggers the

contract TEE to send m1 = (st′ct, outpct, σ) to Fblockchain.

σ protects the integrity of m1 and cryptographically

binds the new state and output to a previous state and a

input, thus a malicious Comp cannot tamper with it.

• Once m1 is accepted by Fblockchain, the contract TEE

sends the decryption of outpct to Pi in a secure channel.

C. Security of ProtEkiden

Theorem 1 characterizes the security of ProtEkiden. A proof

sketch is given in the online version [20].

Theorem 1 (Security of ProtEkiden). Assume that Gatt’s attes-
tation scheme ΣTEE and the digital signature Σ are existen-

tially unforgeable under chosen message attacks (EU-CMA),
that H is second pre-image resistant, and that AE and SE are
IND-CPA secure. Then ProtEkiden securely realizes FEkiden in
the (Gatt,Fblockchain)-hybrid model, for static adversaries.

D. Mitigating app-level leakage

While Ekiden protects within-TEE data, it is not designed to

protect data at contract interfaces, i.e., data leakage resulting

from the contract design. (E.g., a secret prediction model may

be “extracted” via client queries [74].) Common approaches

to minimizing such leakage, e.g., restricting requests based

on requester identity and/or a differential-privacy budget [25],

[39], require persistent counters. The monotonic counters in

SGX are untrustworthy, however [50].

Ekiden instead supports stateful approaches to mitigate

application-level privacy leakage by enabling persistent appli-

cation state—e.g., counters, total consumed differential privacy

budget, etc.—to be maintained securely on chain. Moreover,

the aforementioned atomic delivery guarantee ensures that the

output is only revealed if this state is correctly updated.

E. Performance Optimizations

Given an additional mechanism for revocation, a simple

modification eliminates reliance on the IAS apart from ini-
tialization. When initialized, an enclave creates a signing key

(pk, sk), and outputs pk with an attestation. Subsequently,

attestations are replaced with signatures under sk. Since pk is

bound to the TEE code (by the initial attestation), signatures

under sk prove the integrity of output, just as attestations do.

As with other keys, (pk, sk) are managed by the key manager

(c.f. Section V-B).

In the online version [20] we discuss an extended version

of the protocol with several other performance optimizations.

VII. IMPLEMENTATION

We implemented an Ekiden prototype in about 7.5k lines

of Rust. We also implemented a compiler that automatically

builds contracts into executables that can be loaded into a

compute node, using the Rust SGX SDK [23].

Ekiden is compatible with many existing blockchains. We

have built one end-to-end instantiation, Ekiden-BT, with a

blockchain extending from Tendermint [44], which required

no changes to Tendermint.

A. Programming Model

We support a general-purpose programming model for

specifying contracts. A contract registers a mutable struct

as its state, which Ekiden transparently serializes, encrypts,

and synchronizes with the blockchain after method calls.

Contract methods must be deterministic and terminate in

bounded time. Within this model, we implemented two smart-

contract programming environments. In the Rust backend,

developers can write contracts using a subset of the Rust

programming language, and thus benefit from a range of

open source libraries. We also ported the Ethereum Virtual

Machine (EVM), thereby supporting any contract written for

193

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

ProtEkiden(λ,AE,SE,Σ,{Pi}i∈[N])

1 : Clients Pi:

2 : Initialize: (sski, spki) ←$Σ.KGen(1λ)

3 : (eski, epki) ←$AE.KGen(1λ)
4 : On receive (“create”,Contract) from environment Z:

5 : cid := create(Contract); assert cid initialized on Fblockchain

6 : output (“receipt”, cid)

7 : On receive (“request”, cid, inp, eid) from environment Z:

8 : σPi
:= Sig(sski, (cid, inp))

9 : get pkin
cid from Fblockchain;

10 : let inpct := AE.Enc(pkin
cid, (inp, σPi

))

11 : (st′ct, outpct, σ) := request(cid, inpct)

12 : parse σ as (σTEE, hinp, hold, houtp, spki)

13 : assert H(inpct) = hinp; assert outpct is correct by verifying σ

14 : o := claim-output(cid, st′ct, outpct, σ, epki)

15 : // retry if the previous state has been used by a parallel query

16 : if o = ⊥ then jump to the beginning of the “request” call

17 : parse o as (outp′ct, σTEE)

18 : assert ΣTEE.Vf(pkTEE, σTEE, outp
′
ct) // pkTEE := Gatt.getpk()

19 : output AE.Dec(eski, outp′ct)

20 : On receive (“read”, cid) from environment Z:

21 : send (“read”, cid) to Fblockchain and relay output

22 : Compute Nodes Subroutines (called by clients Pi):

23 : On input create(Contract):

24 : send (“install”, ̂Contract) to Gatt, wait for eid

25 : send (eid, “resume”, (“create”)) to Gatt

26 : wait for ((Contract, cid, st0, pk
in
cid), σTEE)

27 : send (“write”, (Contract, cid, st0, pk
in
cid, σTEE)) to Fblockchain

28 : wait to receive (“receipt”, cid)

29 : On input request(cid, inpct):

30 : send (“read”, cid) to Fblockchain and wait for stct

31 : // non-existing eid is assumed to be created transparently

32 : send (eid, “resume”, (“request”, cid, inpct, stct)) to Gatt

33 : receive ((“atom-deliver”, hinp, hold, st
′
ct, houtp, spki), σTEE, outpct)

34 : // σTEE = ΣTEE.Sig(skTEE, (hinp, hold, st
′
ct, houtp, spki))

35 : let σ := (σTEE, hinp, hold, houtp, spki)

36 : return (st′ct, outpct, σ)

37 : On input claim-output(cid, st′ct, outpct, σ, epki):

38 : send (“write”, cid, (st′ct, σ)) to Fblockchain

39 : if receive (“reject”, cid) from Fblockchain then: return ⊥
40 : send (eid, “resume”, (“claim output”, st′ct, outpct, σ, epki)) to Gatt

41 : receive (“output”, outp′ct, σTEE) from Gatt or abort

42 : return (outp′ct, σTEE)

Fig. 2. Ekiden Protocol. The contract TEE program ̂Contract is defined in Figure 9, in Appendix A.

the Ethereum platform. The system currently does not support

calling contract functions from another contract. We leave this

for future work.

B. Applications

We now describe several different applications we devel-

oped to show the versatility of Ekiden’s programming model.

Figure 3 highlights the secret state and application complexity

of each contract.

a) Machine Learning Contracts: To demonstrate shared

learning on secret data, we implemented two example con-

tracts: (i) credit scoring based on financial records [8] and (ii)

predicting the likelihood of heart disease based on medical

records [67]. In both of these, we used a version of the rusty-

machine [7] machine learning library, which we ported to run

inside our contracts. The training data given to these example

contracts is treated as sensitive data (we use data from the

UCI machine learning repository [46] in our experiments) and

never exposed as plaintext outside the contract.

Our example contracts train the models with added noise

for differential privacy. This prevents information about the

training data from leaking [70] during inference. Ekiden’s

private computation guarantee allows the noise to be added

centrally, which results in better accuracy and utility at the

same level of privacy, compared to having clients add noise

before submitting their data [26]. Additionally, after training,

multiple compute nodes can run serve inference requests at

high capacity without affecting correctness or privacy.

b) Smart Building Thermal Modeling: We ported an

implementation of non-linear least squares, which is used to

predict temperatures based on time series thermal data from

smart buildings [22]. We have deployed this smart contract to

train a shared model across real-time data from select buildings

in Berkeley, CA. These buildings sample their temperature

sensors every 20 seconds, generating data used to update the

predictive model. Ekiden allows the contract to run its model

while keeping the sensor data and model secret, demonstrating

that our system is sufficiently responsive for highly interactive

workloads in an online setting.

c) Tokens: The most popular kind of Ethereum contract

is the ERC20 token standard. Using the Ethereum port (Sec-

tion VII-A), we can run existing ERC20 token contracts. We

also implemented a token contract written directly in Rust,

which yields moderate performance improvement (see Sec-

tion VIII). In either case, Ekiden automatically provides pri-

vacy and anonymity, which the contract would not receive on

the Ethereum mainnet. The secret state in the token the account

balance for each user.

d) Poker: We also implemented a poker contract, where

users take turns submitting their actions to the contract, and the

smart contract contains all of the game logic for shuffling and

(selectively) revealing cards. Poker is a common benchmark

application for blockchain systems and secure multi-party

computation called mental poker [11], [43], [42], [6]. Ekiden

is significantly more robust than these prior implementations

in how it handles player aborts. In most mental poker, if

194

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

Application Language LoC Secret Input/Output Secret State
Machine Learning Rust 806 Training data, predictions Model

Thermal Modeling Rust 621 Sensor data, temperature Building model

Token Rust 514 Transfer (from, to, amount) Account balances

Poker Rust 883 Players’ cards Shuffled deck

Ethereum VM Rust 1411 Input and output Contract state

CryptoKitties EVM Bytecode 54∗ Random mutations Breeding algorithm

Origin Demo Solidity, JS 19∗ Purchase orders Purchase history

Fig. 3. Ekiden smart contracts. For each, we specify the implementation language, development effort (LoC), as well as secret inputs, outputs, and state.
Secret inputs and outputs are only accessible to the contract and the invoking user. Secret state is only accessible to the contract. For the EVM, we only
include the cost of porting Parity-Ethereum’s runtime. For CryptoKitties and Origin Demo, we only include LoC specific to porting, as marked by ∗.

a party aborts, its secret hand cannot be reconstructed by

others, so the game aborts. Handling faults in secure multi-

party computation requires application-specific changes to the

cryptographic protocol [18]. Because Ekiden persists state to

the blockchain after each action, and can be accessed from any

enclave, secret cards can still be revealed if a player aborts.

e) CryptoKitties: CryptoKitties [1] is an Ethereum game

that allows users to breed virtual cats, which are stored on

chain as ERC721 tokens [2]. Each cat has a unique set of

genes that determine its appearance and therefore its value.

The traits of offspring are determined by a smart contract that

mixes the genes of its parents. The source code of the gene

mixing contract is not publicly available: The game developers

aimed to make the breeding process unpredictable.

We obtained the bytecode for the gene mixing contract from

the Ethereum blockchain and executed it using our Ekiden

EVM port. We verified correct behavior by reproducing real

transactions from the Ethereum network.

This example demonstrates that Ekiden can execute an

Ethereum contract even when source code is not available.

Further, Ekiden can provide unique benefits for smart contracts

requiring secrecy or unpredictability such as CryptoKitties.

These properties are difficult to achieve with Ethereum. E.g.,

the CryptoKitties gene mixing algorithm has been reverse-

engineered [80], which allows strategic players to optimize

their chance of breeding cats with rare traits, thus undermining

the game’s ecosystem. By contrast, an Ekiden contract has

access to a source of randomness in hardware and allows secret

elements of a game’s algorithm to be stored in encrypted state.

f) Origin: Origin [61] is a platform for building online

marketplaces on top of Ethereum. We ported a demo applica-

tion which allows users to list and purchase items with Ether.

This application further demonstrates that development frame-

works built for Ethereum can be easily used by Ekiden: the

smart contracts used in the demo work without modification;

we were able to integrate the rest of the demo, namely, a user-

facing web server, with minor modifications. Built on Ekiden,

users’ transaction history in the blockchain are kept private,

and transactions are confirmed faster than on Ethereum.

VIII. EVALUATION

In this section, we present evaluation results for end-

to-end latency and peak throughput. We evaluated the five

applications of Section VII-B: a Rust token contract Token,

implementing an ERC20-like token in the Rust language,

two Ethereum contracts, ERC20 and CryptoKitties, running

in the ported EVM, and two machine learning applications,

Credit and Thermal. Compared to an ERC20 contract on

Ethereum mainnet, Ekiden-BT can support a token contract

with 600x greater throughput, 400x less latency, at 1000x

less monetary cost. While we expect some mild performance

degradation when deployed with a larger scale blockchain,

our performance optimizations significantly reduce the effect

of the blockchain’s speed, as shown below. Furthermore, we

demonstrate that Ekiden can efficiently support computation-

intensive workloads such as machine learning applications

which would be cost-prohibitive on Ethereum. We also quan-

tify the performance gains from each of the optimizations

described in the online version [20]. We show that batching,

caching, and a write-ahead log improve performance and

reduce the network costs of synchronizing state with the

blockchain.

A. Experimental Setup

To evaluate the performance of Ekiden-BT, we ran exper-

iments with four consensus nodes hosted on Amazon EC2

across different availability zones and one compute node (with

a Core i7-6500U CPU with 8GB of memory) hosted locally,

as EC2 does not offer SGX-enabled instances at the time of

writing. Transactions are only run once on the compute node

(K = 1). Each consensus node was run on an t2.medium
instance, with 2 CPU cores and 4 GB of memory. As shown

in Section VIII-C, we do not expect throughput performance

to be significantly impacted by a larger slower blockchain,

because many transactions can be compressed into a single

write onto the blockchain. By separating execution from con-

sensus, these layers can work in parallel. However achieving

consensus among a larger group of consensus nodes will result

in higher end-to-end latencies.

195

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

Token:transfer

Token:get

ERC20:transfer

ERC20:get

Cryptokitties

Credit:train

Credit:infer

Thermal:train

Thermal:infer

La
te

nc
y

(s
ec

)
Ekiden (compute-only)

Ekiden-BT
Ethereum

Fig. 4. End-to-end latency of client requests for various contracts, plotted on
a log scale. Running Rust token and ERC20 token contracts on Ekiden-BT
yields transactions 2-5 orders of magnitude faster than Ethereum. Read-write
transactions on the Ekiden-BT blockchain take about a second, dominated
by the underlying blockchain. Caching avoids writes to the blockchain for
read-only transactions (e.g. get). We only compare Ethereum for the ERC20
contract, as there are no comparable machine learning contracts on Ethereum.

B. End-to-End Latency

Figure 4 shows end-to-end latency for calling the token,

CryptoKitties, and machine learning contracts, plotted on a

log scale. For the “Ekiden-BT” plot, we start our timer when

the client triggers a request and end when the smart-contract

response, committed on chain, is decrypted. For read-only

transactions like “Token:get” or “Credit:infer”, compute nodes

use a locally cached copy of state. Writes to the Ekiden-BT

blockchain take up to a second to confirm. Latencies in Ekiden

are dominated by the time to commit on chain. This relative

cost is lower for compute-intensive workloads like machine

learning training. For comparison, we include a bar (“compute-

only”) that measures computation time only.

For the three transactions that could be run on the Ethereum

network, we plot the publicly reported block rates of the

Ethereum mainnet in March 2018 [28], which represents

the optimistic case that transactions are incorporated in the

next block. Compared to the proof-of-work protocol used

in Ethereum, Ekiden-BT has 2-3 orders of magnitude faster

confirmations, in part due to the use of a faster blockchain.

For the ERC20 token, which runs on the EVM in Ekiden-BT,

we see similar performance to the Rust token contract, because

both use the same consensus protocol.

C. Throughput

To measure Ekiden-BT’s peak performance, we conducted

an experiment with 1000 clients, each sending 100 serialized

requests to a compute node. For each data point, we disregard

the first and last 10% of requests, averaging the stable perfor-

mance under stress. Figure 5 shows the results for the token,

CryptoKitties, and machine learning contracts. For the base-

line, we implement the simplest Ekiden-BT protocol, where

each request triggers a full state checkpoint on our blockchain.

In the “Ekiden-BT” bar, we include our optimizations, as

described in the online version [20]. Batching compresses mul-

tiple state checkpoints into a single commit on the blockchain.

We then cache the latest state on compute nodes and use

 1

 10

 100

 1000

 10000

 100000

Token:transfer

Token:get

ERC20:transfer

ERC20:get

Cryptokitties

Credit:train

Credit:infer

Thermal:train

Thermal:infer

P
ea

k
T

hr
ou

gh
pu

t (
tx

n/
se

c) Baseline
Ekiden-BT
Ethereum

Fig. 5. Throughput comparison across contracts and systems. Our baseline
reads and writes to a blockchain for every request. Throughput is limited
by blockchain performance. Our optimizations improve performance by 2–
4 orders of magnitude over the baseline, with more advantage for read-write
operations on contracts with large state (e.g. Token). In-EVM operations incur
about 10x higher cost compared to our Rust token. For ERC20, we achieve
1–2 orders of magnitude higher performance than Ethereum.

 0

 1000

 2000

 3000

 4000

 5000

 6000

0.1 sec 1 sec 10 sec 1 min 10 min

P
ea

k
Th

ro
ug

hp
ut

 (t
xn

/s
ec

)

Consensus commit time

Fig. 6. Peak throughput performance of token transfers under different
consensus layer commit times. Because contract execution occurs in parallel
to state agreement, we show that good throughput performance for a wide
range of commit times on the consensus layer. We expect Ekiden to perform
well on a variety of blockchains.

a write-ahead log for state updates. Our optimizations have

the greatest benefit for read-write operations, like transfer.

They have less benefit for contracts with smaller states, such as

the machine learning contract with small models. Conversely,

writes to the blockchain significantly impact performance for

read-write transactions, compared to read-only transactions

with cached state. For comparison on the transactions that

could be run on the Ethereum network, we plot the publicly

reported transaction throughput of the Ethereum mainnet in

March 2018 [28]. Because CryptoKitties incurs higher com-

putational cost, we can fit fewer transactions in a block due

to the gas limit, compared to ERC20 transactions.

D. Impact of Consensus on Throughput

To understand the impact of using different consensus

protocols with Ekiden, we measured peak throughput per-

formance of token transfers as a function of the time to

commit state to the blockchain. In order to simulate slower

consensus protocols, we inject a variable delay for writes to

the consensus nodes. Figure 6 shows that token transfers have

good performance for a wide range of commit latencies seen

in popular blockchains.

196

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

Because state is cached at compute nodes, compute nodes

can opportunistically execute new transactions without waiting

for a response from consensus nodes. Periodically, compute

nodes asynchronously commit the state to the blockchain, as

defined by the batch size. By separating contract execution

from agreement on state, the layers can operate in parallel.

In contrast, Ethereum transactions are broadcast to all min-

ers. Miners execute transactions sequentially, and all contracts

are serialized onto a single blockchain. At the time of writing,

there are 36974 ERC20 token contracts, all using the Ethereum

blockchain [28]. In contrast, Ekiden parallelizes contracts

across compute nodes, eliminating computational bottlenecks

for better performance. However, implementation of full cross-

contract calls remains future work.

E. Transaction Costs

In March 2018 on Ethereum, it cost 52K gas ($0.17 USD)

to perform a transfer on an ERC20 token contract and 130K

gas ($0.39 USD) to compute the breeding algorithm on

CryptoKitties [3]. By contrast, IBM rents machines with Intel

SGX processors useable by Ekiden for $260.00 per month.

These can do a token transfer in 2ms and CryptoKitties

breeding in 100ms, at a cost of roughly 10−7 and 10−5 dollars

respectively, and a cost of 10−5 dollars for each call to train in

our machine learning contract. For these contracts, the cost to

commit state to the Ethereum blockchain ranges from $0.0688

for CryptoKitties to $1.92 to store a 1KB machine learning

model. Because Ekiden can compress results from multiple

requests into a single write to the blockchain, our system has a

total cost vastly less than that of on-chain execution. There are

no current public deployments of Tendermint for comparison.

IX. RELATED WORK

Confidential smart contracts: Hawk [41] is a smart contract

system that provides confidentiality by executing contracts

off-chain and posting only zero-knowledge proofs on-chain.

As the zero-knowledge proofs in Hawk (zk-SNARKs) incur

very high computational overhead, Ekiden is significantly

faster. Additionally, Hawk was designed for a single compute

node (called the “manager”), and thus cannot (as designed)

offer high availability. While Ekiden does require trust in the

security of Intel SGX, Hawk’s “manager” must be trusted for

privacy. Hawk supports only a limited range of contract types,

not the general functionality of Ekiden.

The idea of combining ledgers with trusted hardware for

smart contract execution is briefly mentioned in Hawk and also

treated in [21], [40]. [21] combines blockchain with TEE to

achieve one-time programs that resemble smart contracts but

only aim for a restricted functionality (one-shot MPC with

N parties providing input). [40] includes a basic prototype,

but omits critical system design issues; e.g., its permission-

less “proof-of-publication” overlooks the technical difficulties

arising from lack of trusted wall-clock time in enclaves.

Ekiden is also closely related to and influenced by Hyper-

ledger Private Data Objects (PDO) [14] from Intel. PDOs use

smart contracts, executed in SGX enclaves, to mediate access

to data objects shared amongst mutually distrusting parties.

To the best of our knowledge, PDOs target permissioned and

managed settings (requiring, e.g., special-purpose validation

rules), while Ekiden supports permisionless and open settings

as well. This leads to key technical differences. For example,

PDO uses a set of Provisioning Services to store encryption

keys without worrying about availability risk, which cannot be

easily realized in the Ekiden setting where churn is possible. In

contrast, Ekiden uses a secret-sharing-based key management

protocol that tolerates churn and allows flexible committee

reconfiguration.

The Microsoft Coco Framework [54] is concurrent and

independent work to port existing smart contract systems,

such as Ethereum, into an SGX enclave. To the best of

our knowledge, only a whitepaper containing a high-level

overview has been produced. No details of a protocol or

implementation have yet been released.

Blockchain transaction privacy: Ekiden’s goals relate to

mechanisms for enhancing transaction privacy on public

blockchains. Maxwell proposed a confidential transaction

scheme [51] for Bitcoin that conceals transaction amounts,

but not identities. Zerocash [9] as well as Cryptonote [71],

[76], Solidus [19], and Zerocoin [55] provides stronger confi-

dentiality guarantees by concealing identities. These schemes,

however, do not support smart contracts.

Privacy-preserving systems based on trusted hardware:
Trusted hardware, particularly Intel SGX, has seen a wide

spectrum of applications in distributed systems. M2R [24],

VC3 [69], Opaque [79] and Ohrimenko et al. [59] leverage

SGX to offer privacy-preserving data analytics and machine

learning with various security guarantees, Ryoan [35] is a

distributed sandbox platform using SGX to confine privacy

leakage from untrusted applications that process sensitive data.

These systems do not address state integrity and confidentiality

over a long-lived system. In comparison, Ekiden provides

a stronger integrity and availability guarantees by persisting

contract states on a blockchain.

Blockchains for verifiable computations and secure multi-
party computations: Several related works offer blockchain-

based guarantees of computation integrity, but cannot guar-

antee privacy [49], [73], [72]. Other works have used a

blockchain for fairness in MPC by requiring parties to forfeit

security deposits if they abort [11], [43], [42], [6], [81],

[21]. Compared to these, Ekiden can guarantee that all data

can be recovered if any compute node remains online. TEE-

based computation is also far more performant than MPC.

A theoretical scheme [31] combines witness encryption with

proof-of-stake blockchains to achieve one-time programs that

resemble smart contracts but avoid use of trusted hardware.

This scheme is regrettably even more impractical than MPC.

X. CONCLUSION

Ekiden demonstrates that blockchains and trusted enclaves

have complementary security properties that can be com-

bined effectively to provide a powerful, generic platform

197

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

for confidentiality-preserving smart contracts. The result is

a compelling programming model that overcomes significant

challenges in blockchain smart contracts. We show that Ekiden

can be used to implement a variety of secure decentralized

applications that compute on sensitive data.

In future work we plan to extend Ekiden to operate under

a stronger threat model, leveraging techniques such as secure

multi-party computation [47], [21], [6], to protect the system’s

more critical features, such as key management and coordina-

tion across compute nodes. Coordination can also facilitate

parallelism in contract execution, merging concurrent output

from multiple enclaves to obtain still higher performance from

Ekiden.

ACKNOWLEDGMENTS

We wish to thank Intel, and Mic Bowman in particular,

for ongoing research discussions and generous support of a

number of aspects of this work. Our discussions regarding

Intel’s PDO system illuminated important technical challenges

in Ekiden and influenced and helped us refine its design.

We also wish to thank Iddo Bentov, Joe Near, Chang

Liu, Jian Liu, and Lun Wang for their helpful feedback and

discussion. We also thank Pranav Gaddamadugu and Andy

Wang for their contributions to application development. This

material is in part based upon work supported by the Center for

Long-Term Cybersecurity, DARPA (award number N66001-

15-C-4066) IC3 industry partners, and the National Sci-

ence Foundation (NSF award numbers TWC-1518899 CNS-

1330599, CNS-1514163, CNS-1564102, CNS-1704615, and

ARO W911NF-16-1-0145). This work was also supported in

part by FORCES (Foundations Of Resilient CybEr-Physical

Systems), which receives support from the National Sci-

ence Foundation (NSF award numbers CNS-1238959, CNS-

1238962, CNS-1239054, CNS-1239166). Any opinions, find-

ings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

REFERENCES

[1] “CryptoKitties - Collect and breed digital cats,” https://www.
cryptokitties.co/.

[2] “EIP 721: ERC-721 Non-Fungible Token Standard,” https://eips.
ethereum.org/EIPS/eip-721.

[3] “Eth gas station,” https://ethgasstation.info.
[4] “Keystone Project,” https://keystone-enclave.github.io/.
[5] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology

for CPU based attestation and sealing,” in HASP’13, 2013, pp. 1–7.
[6] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,

“Secure multiparty computations on Bitcoin,” in Security and Privacy
(SP), 2014 IEEE Symposium on. IEEE, 2014, pp. 443–458.

[7] AtheMathmo, “rusty-machine,” https://github.com/AtheMathmo/
rusty-machine.

[8] B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J. Suykens, and
J. Vanthienen, “Benchmarking state-of-the-art classification algorithms
for credit scoring,” Journal of the operational research society, vol. 54,
no. 6, pp. 627–635, 2003.

[9] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in IEEE Symposium on Security and Privacy, 2014.

[10] I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach, P. Daian, and
A. Juels, “Tesseract: Real-time cryptocurrency exchange using trusted
hardware,” 2017, https://eprint.iacr.org/2017/1153.

[11] I. Bentov, R. Kumaresan, and A. Miller, “Instantaneous decentralized
poker,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2017, pp. 410–440.

[12] T. Bernard, T. Hsu, N. Perlroth, and R. Lieber, “Equifax Says Cyberat-
tack May Have Affected 143 Million in the U.S.” https://www.nytimes.
com/2017/09/07/business/equifax-cyberattack.html.

[13] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of a
new cryptographic library,” in LatinCrypto, 2012.

[14] M. Bowman, A. Miele, M. Steiner, and B. Vavala, “Private data objects:
an overview,” arXiv preprint arXiv:1807.05686, 2018.

[15] E. Brickell and J. Li, “Enhanced privacy id from bilinear pairing,”
Cryptology ePrint Archive, Report 2009/095, 2009, https://eprint.iacr.
org/2009/095.

[16] B. Bünz, S. Goldfeder, and J. Bonneau, “Proofs-of-delay and ran-
domness beacons in Ethereum,” IEEE Security and Privacy on the
Blockchain (IEEE S&B), 2017.

[17] R. Canetti, “Universally Composable Security: A New Paradigm for
Cryptographic Protocols,” Cryptology ePrint Archive, Report 2000/067,
2000, https://eprint.iacr.org/2000/067.

[18] J. Castella-Roca, F. Sebé, and J. Domingo-Ferrer, “Dropout-tolerant
TTP-free mental poker,” in International Conference on Trust, Privacy
and Security in Digital Business. Springer, 2005, pp. 30–40.

[19] E. Cecchetti, F. Zhang, Y. Ji, A. E. Kosba, A. Juels, and E. Shi, “Solidus:
Confidential distributed ledger transactions via PVORM,” in ACM CCS,
2017.

[20] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. M. Johnson,
A. Juels, A. Miller, and D. Song, “Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant smart contract
execution,” CoRR, vol. abs/1804.05141, 2018. [Online]. Available:
http://arxiv.org/abs/1804.05141

[21] A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers,
“Fairness in an unfair world: Fair multiparty computation from public
bulletin boards,” in ACM CCS, 2017.

[22] T. Dewson, B. Day, and A. Irving, “Least squares parameter estimation
of a reduced order thermal model of an experimental building,” Building
and Environment, vol. 28, no. 2, pp. 127–137, 1993.

[23] Y. Ding, R. Duan, L. Li, Y. Cheng, Y. Zhang, T. Chen, T. Wei, and
H. Wang, “Rust SGX SDK: Towards Memory Safety in Intel SGX
Enclave,” in ACM CCS, 2017.

[24] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang, “M2R:
Enabling Stronger Privacy in MapReduce Computation,” in USENIX
Security, 2015.

[25] C. Dwork, “Differential privacy: A survey of results,” in International
Conference on Theory and Applications of Models of Computation.
Springer, 2008, pp. 1–19.

[26] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends R© in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[27] Ethereum Foundation, “Ethereum: Blockchain App Platform,” https://
www.ethereum.org/.

[28] Etherscan, “Etherscan: The Ethereum Blockchain Explorer,” https://
etherscan.io/.

[29] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “Iron:
functional encryption using Intel SGX,” in ACM CCS, 2017.

[30] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” in International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 1999, pp. 295–310.

[31] R. Goyal and V. Goyal, “Overcoming cryptographic impossibility results
using blockchains,” in Theory of Cryptography Conference. Springer,
2017, pp. 529–561.

[32] S. Gueron, “A memory encryption engine suitable for general purpose
processors.” IACR Cryptology ePrint Archive, vol. 2016, p. 204, 2016.

[33] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret
sharing or: How to cope with perpetual leakage,” in Advances in
Cryptology — CRYPT0’ 95, D. Coppersmith, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1995, pp. 339–352.

[34] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo,
“Using innovative instructions to create trustworthy software solutions,”
in HASP, 2013.

[35] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed
sandbox for untrusted computation on secret data,” in USENIX OSDI,
2016.

198

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

[36] IBISWorld, “Credit Bureaus & Rating Agencies in the US,” http:
//clients1.ibisworld.com/reports/us/industry/ataglance.aspx?entid=1475.

[37] Intel, “Intel SGX platform services,” https://software.intel.com/
sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf,
(Accessed on 01/29/2018).

[38] “GitHub discussion on sgx get trusted time,” Intel SGX SDK Devel-
opers, 9 2017, https://github.com/intel/linux-sgx/issues/161.

[39] N. M. Johnson, J. P. Near, and D. X. Song, “Practical differential privacy
for SQL queries using elastic sensitivity,” CoRR, vol. abs/1706.09479,
2017. [Online]. Available: http://arxiv.org/abs/1706.09479

[40] G. Kaptchuk, I. Miers, and M. Green, “Giving state to the stateless:
Augmenting trustworthy computation with ledgers,” Cryptology ePrint
Archive, Report 2017/201, 2017. https://eprint. iacr. org/2017/201, Tech.
Rep., 2017.

[41] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in IEEE Security and Privacy, 2016.

[42] R. Kumaresan and I. Bentov, “Amortizing secure computation with
penalties,” in ACM CCS, 2016.

[43] R. Kumaresan, T. Moran, and I. Bentov, “How to use Bitcoin to play
decentralized poker,” in ACM CCS, 2015.

[44] J. Kwon, “Tendermint: Consensus without mining,” 2014.

[45] J. Leimgruber and A. M. J. Backus, “Bloom protocol:decentralized credit
scoring powered by Ethereum and IPFS,” 27 Jan. 2018.

[46] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[47] Y. Lindell and B. Pinkas, “Secure multiparty computation for privacy-
preserving data mining,” Journal of Privacy and Confidentiality, vol. 1,
no. 1, p. 5, 2009.

[48] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm: A
programming framework for secure computation,” in IEEE Security and
Privacy (S&P), 2015.

[49] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “Demystifying incentives
in the consensus computer,” in ACM CCS, 2015.

[50] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “ROTE: Rollback protection for trusted
execution,” in USENIX Security Symposium, USENIX Security, 2017.

[51] G. Maxwell, “Confidential values,” https://people.xiph.org/∼greg/
confidential values.txt, (Accessed on 01/31/2018).

[52] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in HASP, 2013.

[53] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage, “A fistful of Bitcoins: characterizing payments
among men with no names,” in Proceedings of the 2013 conference on
Internet measurement conference. ACM, 2013, pp. 127–140.

[54] Microsoft, “The Coco Framework: Technical Overview,” https://github.
com/Azure/coco-framework/.

[55] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from bitcoin,” in IEEE Security and Privacy, S&P,
2013.

[56] M. Möser and R. Böhme, “The price of anonymity: empirical evidence
from a market for Bitcoin anonymization,” Journal of Cybersecurity,
2017.

[57] M. Naor, B. Pinkas, and O. Reingold, “Distributed pseudo-random
functions and KDCs,” in International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 1999.

[58] K. Nayak, C. Fletcher, L. Ren, N. Chandran, S. Lokam, E. Shi, and
V. Goyal, “Hop: Hardware makes obfuscation practical,” in 24th Annual
Network and Distributed System Security Symposium, NDSS, 2017.

[59] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning on
trusted processors.” in USENIX Security Symposium, 2016, pp. 619–636.

[60] D. O’Keeffe, “SGXSpectre,” 2018, https://github.com/lsds/spectre-
attack-sgx.

[61] Origin Protocol, Inc., “Origin protocol,” https://www.originprotocol.
com/, 2018.

[62] R. Pass, E. Shi, and F. Tramer, “Formal abstractions for attested execu-
tion secure processors,” Cryptology ePrint Archive, Report 2016/1027,
2016, https://eprint.iacr.org/2016/1027.

[63] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution,” in 24th USENIX Security Symposium
(USENIX Security), 2015.

[64] F. Reid and M. Harrigan, “An analysis of anonymity in the Bitcoin
system,” in Security and privacy in social networks. Springer, 2013,
pp. 197–223.

[65] D. Ron and A. Shamir, “Quantitative analysis of the full Bitcoin trans-
action graph,” in International Conference on Financial Cryptography
and Data Security. Springer, 2013, pp. 6–24.

[66] D. Ryan, “Calculating Costs in Ethereum Contracts,” https://hackernoon.
com/ether-purchase-power-df40a38c5a2f.

[67] P. Sajda, “Machine learning for detection and diagnosis of disease,”
Annu. Rev. Biomed. Eng., vol. 8, pp. 537–565, 2006.

[68] D. Schultz, B. Liskov, and M. Liskov, “MPSS: Mobile proactive
secret sharing,” ACM Transactions on Information and System Security
(TISSEC), vol. 13, no. 4, p. 34, 2010.

[69] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “VC3: Trustworthy data analytics in the cloud
using SGX,” in Security and Privacy (SP), 2015 IEEE Symposium on.
IEEE, 2015, pp. 38–54.

[70] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Security and
Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017, pp. 3–18.

[71] S.-F. Sun, M. H. Au, J. K. Liu, and T. H. Yuen, “Ringct 2.0: A compact
accumulator-based (linkable ring signature) protocol for blockchain
cryptocurrency monero,” in European Symposium on Research in Com-
puter Security. Springer, 2017, pp. 456–474.

[72] J. Teutsch, V. Buterin, and C. Brown, “Interactive coin offerings,” URl:
https://people. cs. uchicago. edu/˜ teutsch/papers/ico. pdf (visited on
11/16/2017), 2017.

[73] J. Teutsch and C. Reitwießner, “Truebit: a scalable verification solution
for blockchains,” 2017.

[74] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in USENIX Security
Symposium, 2016, pp. 601–618.

[75] F. Tramer, F. Zhang, H. Lin, J.-P. Hubaux, A. Juels, and E. Shi, “Sealed-
glass proofs: Using transparent enclaves to prove and sell knowledge,” in
IEEE European Symposium on Security and Privacy (EuroS&P), 2017.

[76] N. Van Saberhagen, “Cryptonote v2.0,” 2013.
[77] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-

istic side channels for untrusted operating systems,” in IEEE Symposium
on Security and Privacy, SP, 2015, pp. 640–656.

[78] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. V. Renesse, “REM:
Resource-efficient mining for blockchains,” in USENIX Security Sym-
posium (USENIX Security), Vancouver, BC, 2017.

[79] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2017.

[80] Y. Zhou, D. Kumar, S. Bakshi, J. Mason, A. Miller, and M. Bailey,
“Erays: Reverse engineering ethereum’s opaque smart contracts,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018.

[81] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in Security and Privacy Workshops (SPW),
2015 IEEE. IEEE, 2015, pp. 180–184.

APPENDIX

A. Supplementary Formalism

1) Ideal Blockchain: We specify the ideal functionality for

a blockchain in Fig. 7.

2) Ideal functionality FEkiden: We specify the security goals

of Ekiden in the ideal functionality FEkiden defined in Figure 8.

FEkiden allows parties to create contracts and interact with

them. Each party Pi is identified by a unique id simply denoted

Pi. Parties send messages over authenticated channels. To

capture the allowed information leakage from the encryption,

we follow the convention of [17] and parameterize FEkiden

with a leakage function
(·). We use the standard delayed
output terminology [17] to model the power of the network

adversary. Specifically, when FEkiden sends a delayed output

outp to P , this means that outp is first sent to the adversary

199

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

Fblockchain[succ]
1 : Parameter: successor relationship succ : {0, 1}∗ × {0, 1}∗ → {0, 1}
2 : On receive (“init”): Storage := ∅
3 : On receive (“read”, id): output Storage[id], or ⊥ if not found

4 : On receive (“write”, id, inp) from P :

5 : let val := Storage[id], set to ⊥ if not found

6 : if succ(val, inp) = 1 then

7 : Storage[id] := val ‖ (inp,P); output (“receipt”, id)

8 : else output (“reject”, id)

9 : On receive (“∈”, id, val):

10 : if val ∈ Storage[id] then output true else output false

Fig. 7. Ideal blockchain. The parameter succ defines the validity of new
items. A new item can only be appended to the storage if the evaluation of
succ outputs 1.

FEkiden(λ, �,{Pi}i∈[N])

1 : Parameter: leakage function � : {0, 1}∗ → {0, 1}∗
2 : On receive (“init”): Storage := ∅
3 : // Create a new contract

4 : On receive (“create”,Contract) from Pi for some i ∈ [N]:

5 : cid←$ {0, 1}λ
6 : notify A of (“create”,Pi, cid,Contract); block until A replies

7 : Storage[cid] := (Contract,�0)

8 : send a public delayed output (“receipt”, cid) to Pi

9 : // Send queries to a contract

10 : On receive (“request”, cid, inp, eid) from Pi for some i ∈ [N]:

11 : notify A of (“request”, cid,Pi, �(inp))

12 : (Contract, st,) := Storage[cid]; abort if not found

13 : (outp, st′) := Contract(Pi, inp, st)

14 : let �st = �(st)

15 : notify A of (cid, �st′ , �(outp), eid)

16 : wait for “ok” from A and halt if other messages received

17 : update Storage[cid] := (Contract, st′, �st′)
18 : send a secret delayed output outp to Pi

19 : // Allow public access to encrypted state

20 : On receive (“read”, cid) from Pi for some i ∈ [N]:

21 : (, , �st) := Storage[cid]; abort if not found

22 : send �st to Pi

23 : if Pi is corrupted: send �st to A

Fig. 8. The ideal functionality of Ekiden.

A and forwarded to P after acknowledgement by A. If the

message is secret, only the allowed amount of leakage (i.e.,

that specified by the leakage function) is revealed to S.

A Contract is a user-provided program. Each smart contract

is associated with a piece of persistent storage where the

contract code and st can be stored. The storage is public;

therefore FEkiden allows any party, including A, to read the

storage content. The information leakage through such reading

is also defined by the leakage function
.
Users can send queries to FEkiden to execute the contract

code with user-provided input. The execution of a contract

will result in a secret output (denoted outp) returned to the

invoker and a secret transition to a new contract state (denoted

st′), equivalent intuitively to black-box contract execution

(modulo leakage). Although any party may send messages to

Contract TEE wrapper ̂Contract
1 : On input (“create”) :

2 : cid := H(Contract)

3 : (pkin
cid, sk

in
cid) := keyManager(“input key”)

4 : kstate
cid := keyManager(“state key”)

5 : st0 = SE.Enc(kstate
cid ,�0)

6 : return (Contract, cid, state0, pk
in
cid)

7 : On input (“request”, cid, inpct, stct):

8 : // retrieve skin
cid, k

state
cid from a key manager as above

9 : (inp, σPi
) := AE.Dec(skin

cid, inpct)

10 : assert Vf(σPi
, spki, (cid, inp)) // spki is publicly known

11 : stold := SE.Dec(kstate
cid , stct)

12 : stnew, outp := Contract(stold, inp, spki)

13 : st′ct := SE.Enc(kstate
cid , stnew)

14 : // initiate atomic delivery

15 : kout
cid := keyManager(“output key”)

16 : outpct := SE.Enc(kout
cid, outp)

17 : let hinp := H(inpct), hold := H(stct), houtp = H(outpct)

18 : return ((“atom-deliver”, hinp, hold, st
′
ct, houtp, spki), outpct)

19 : On input (“claim output”, st′ct, outpct, σ, epki):

20 : parse σ as (σTEE, hinp, hold, houtp, spki)

21 : assert H(outpct) = houtp

22 : send (“∈”, cid, (st′ct, σ)) to Fblockchain

23 : receive true from Fblockchain or abort

24 : kout
cid := keyManager(“output key”)

25 : outp := SE.Dec(kout
cid, outpct)

26 : return (“output”,AE.Enc(epk, outp))

Fig. 9. Contract TEE wrapper.

the contract, the contract code can enforce access control based

on the calling pseudonym passed to the contract.

a) Corruption model: FEkiden adopts the standard cor-

ruption model of [17]. A can corrupt any number of clients,

and up to all but one contract executors. When A corrupts a

TEE (or similarly a party), A sends the message (“corrupt”,

eid) to FEkiden. If a query includes an invalid TEE id, FEkiden

aborts if instructed by A. Otherwise the ideal functionality

ignores eids, which are included in FEkiden only as a technical

requirement to ensure interface compatibility with ProtEkiden,

given below.

3) Contract TEE wrapper: The contract TEE wrapper
̂Contract is specified in Fig. 9.

200

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2022 at 06:55:41 UTC from IEEE Xplore. Restrictions apply.

